Strategies for Underwater Cultural heritage:
The Case for the Bajo de la Campana Phoenician shipwreck

Mark E. Polzer
Research Associate, Institute of Nautical Archaeology, USA, and Flinders University, Australia
mark.polzer@flinders.edu.au

Mark Polzer is a Prescott Doctoral Candidate in the departments of Archaeology and Classics & Ancient History at the University of Western Australia and is the Principal Investigator of the Bajo de la Campana Phoenician shipwreck. He is a Research Associate and part-time lecturer in the Department of Archaeology at Flinders University and a Research Associate of the Institute of Nautical Archaeology. He also serves on the Maritime Archaeology Advisory Committee for the Western Australian Museum. Mark is a National Geographic Explorer and has directed shipwreck surveys and excavations across the Mediterranean and Black Sea.

Introduction

From 2007-2011, the Institute of Nautical Archaeology (INA) conducted the complete archaeological excavation of a Phoenician shipwreck at Bajo de la Campana, located off La Manga del Mar Menor (San Javier) in Murcia, Spain. ARQUA, Spain’s National Museum of Underwater Archaeology in Cartagena, supported the excavation and is responsible for the ongoing conservation and curation of the recovered materials. Following is an overview of the excavation and research methodologies employed, and some thoughts on alternative strategies for underwater cultural heritage—in particular, shipwrecks—in light of the 2001 UNESCO Convention on the Protection of the Underwater Cultural Heritage (the Convention).

The Bajo de la Campana Phoenician shipwreck excavation (2007-2011)

The ancient shipwreck site of Bajo de la Campana has been known since at least 1958, when scrap-metal salvaging on modern shipwrecks at the site turned up various archaeological materials. Shortly thereafter, sport divers visited the site and picked up exposed artefacts from the bottom for souvenirs. Most of the significant pieces were turned over to the authorities in 1979 (Roldán Bernal et al., 1995: 12) and now form part of ARQUA’s permanent exhibition. Spanish heritage authorities investigated the site in 1972 and 1988 and, in 1992, made a complete reassessment of all known materials removed from the site since its discovery (Roldán Bernal et al., 1995: 12-13).

In 2007, the Institute of Nautical Archaeology at Texas A&M University (INA) signed an agreement with the Ministry of Culture of Spain to investigate the ancient shipwreck site with support from the National Museum of Maritime Archaeology (now ARQUA) and its National Centre for Underwater Archaeological Research (CNIAS). That same year, INA and ARQUA undertook an
The initial survey of Bajo de la Campana to relocate the area where the Phoenician objects had been found and assess the environmental and logistical conditions at the site, to gauge the extent of the remaining archaeological materials, and to determine definitively whether the site warranted full-scale excavation (Polzer, 2012: 27-28). The 2007 expedition was funded by a grant from the Spain-USA Foundation and project funds from INA, along with equipment and logistical support from ARQUA.

The seabed surrounding Bajo de la Campana is rocky, consisting of boulders of all sizes interspersed with pockets of coarse sand, rock debris, and shell. Over this grows a dense carpet of seagrass (Polzer, 2012: 28). It became clear after our initial dives to the site that, although all of the obvious and diagnostic pieces had been picked up by recreational divers or recovered during previous investigations, there still was archaeological material –mostly pottery sherds– scattered across the seabed. Equally apparent was that a simple visual survey would be ineffective, given the nature of the bottom environment. We attempted to probe the seabed using thin steel rods, in order to gain an understanding of the sub-bottom stratigraphy, but the abundance of boulders and the gravelish nature of the «sandy» areas proved impenetrable to mechanical probing. Similarly, the dense seagrass cover made photogrammetry and photographic recording virtually impossible.

Ultimately, we decided to approach the site survey like a «surface excavation». We set up a 2 × 2 m grid over the survey area, assigned divers to individual grid squares, and meticulously
examined the entire site, square by square. Any archaeological material that was found was recorded, mapped and collected, and later was catalogued at the excavation house before being deposited in ARQUA’s conservation facility. For mapping purposes, the grid sectors were subdivided into sixteenths and each item located to within a 50 cm square area. All intact artefacts and diagnostic fragments also were mapped using metre tapes and trilateration. If, when a surface artefact was raised, another was revealed beneath it, it was exposed fully by hand-fanning, recorded, mapped and then recovered as well. Similarly, the team hand-fanned around and under boulders in order to estimate the amount of remains buried beneath. In this manner, the team successfully surveyed a 20 m square area of seabed at the foot of the Bajo, and recovered four elephant tusks, numerous fragments of pottery from at least three different assemblages, a wooden comb, lumps of raw amber, pine nuts, metal ingots and raw ore, dunnage material, ballast stones, and lead sheathing, copper nails and wooden scraps from a ship’s hull. These results clearly indicated that a substantial amount of wreckage remained buried at the site and that it was comprised of an array of object and material types that included both raw and finished goods. In addition, the plotted distribution of the finds provided some indication of where the concentration of Phoenician material was situated, which later helped form the basis for the ensuing excavation plan.

In light of such positive results, a full-scale excavation and conservation program was initiated, with INA leading the excavation and research and ARQUA overseeing the material conservation. The project was permitted by the Heritage Office of the Region of Murcia and funded by INA, the National Geographic Society, the Center for Maritime Archaeology and Conservation at Texas A&M University, and the Program for Cultural Cooperation Between Spain’s Ministry of Culture and United States Universities.

The underwater archaeological methods and techniques that we employed to excavate, record and map the Bajo de la Campana site are well established (Muckelroy, 1978; Ruppé and Barstad, 2002; Green, 2004; Bowens, 2009; Nieto Prieto and Cau Ontiveros, 2009; etc.). The beginning weeks of each field season involved the removal of tons of rock debris and boulders, with divers manually carrying basketfuls of the former off the site, while employing straps and lift bags to move the latter. The largest boulder removed from the site required four large lift bags with a combined 4.5 tons of lifting capacity. At the end of each season, we had to put many of these same rocks back onto the site in order to protect it from looting and winter storms during the intervening months (Polzer, 2012: 28).

Excavation and mapping were facilitated by setting a grid over the site, which effectively divided the excavation area into a matrix of 2 m squares labelled by columns and numbered by rows. The grid oriented divers to their assigned work areas and provided a simple means for mapping non-diagnostic fragments. As during the preliminary survey, these were located visually within a 50 × 50 cm area by subdividing each grid sector into sixteenths. For mapping intact and diagnostic artefacts, we established a network of datums, or control points, placed strategically around the site. The relative 3-dimensional position of each datum was established by measuring the direct distances from each datum to all of the others, and using a direct survey method (DSM) computer program to perform the iterative least-squares fit of the data (Rule, 1989). The true positions of the datums were established using a GPS unit sealed in an underwater housing and connected to a receiver floating on the surface directly above. This network of fixed datums allowed us then to map items much more precisely, and in three dimensions, using photogrammetry and the computer software PhotoModeler® (Polzer and Casabán, 2012: 13-14; see also Green et al., 2002).

Archaeologists used airlifts to remove overburden and expose buried archaeological material; a compressor housed on our expedition boat anchored near the wreck site supplied the air. Once
an object was exposed fully, its excavator sketched it, recorded its orientation and associated context, then mapped its location and, finally, carefully raised it to the surface. Back at the expedition house, team members spent long afternoons and evenings recording, photographing and accessioning all of the recovered artefacts; processing the day’s photogrammetry and updating the site plan; entering dive log data, journal entries and artefact information into the project database; planning for the next day’s site work; and performing a myriad of other tasks. At the end of each week, all of the archaeological materials were transferred to the ARQUA conservation facility in Cartagena.

The initial survey and four consecutive seasons of excavation resulted in the recovery of a remarkably varied assemblage of raw materials and manufactured goods (Polzer and Pinedo, 2011: 8-11; Polzer, 2012: 28-33). The ship’s bulk cargo consisted of more than 50 elephant tusks, some marked with Phoenician inscriptions (Roldán Bernal et al., 1995: 28-30); 154 small, mostly circular, plano-convex tin ingots and 13 similar ingots of copper; and approximately 10,000 nuggets of galena representing a ton of the lead ore. The ship also carried a collection of pottery that represents most types of the western Phoenician repertoire, including an assortment of amphoras, pots, plates, bowls, tripod mortars, lamps, oil bottles and other small jugs and pitchers. These were accompanied by a consignment of more luxurious objects, many of which are attested in tomb deposits and, to a lesser extent, habitation sites from both Phoenician and Indigenous contexts across the Iberian Peninsula and in other western and central Mediterranean locales. These include ivory-handled knives or daggers, a pin made of antler, double-ended boxwood combs, bronze furniture elements, bronze thymiateria stands and a bronze ceremonial piece, decorated ostrich eggshells and an ivory ring-stand, fragments of an alabaster jar, and a fluted limestone pedestal. The conservation, restoration and detailed study and interpretation of all these materials are ongoing.

In-situ preservation of shipwreck sites

Since the adoption in 2001 of the UNESCO Convention, there has been a growing emphasis towards *in-situ* preservation (Article 2.5, Annex Rule 1) as the standard approach to underwater archaeological sites such as shipwrecks (Manders, 2008; Maarleveld et al., 2013: 20). But what exactly *in-situ* preservation means has been a point of contention and debate (Kingsley, 2010b: 3; Ortman et al., 2010; Shefi, 2011).

What, most definitely, *in-situ* preservation is not is an excuse for authorities, constrained by stressed budgets and reduced staffs, to simply do nothing (Ortman et al., 2010: 34, 38). At the minimum, *in-situ* preservation is *in-situ* protection and involves active monitoring and oversight, whether a site is excavated or not. Such a method is employed by ARQUA for the protection of the Mazarrón 2 boat remains left *in-situ* in the waters off playa de la Isla, Mazarrón (Negueruela et al., 2004). In the case of more modern shipwrecks sites, with iron hulls and superstructure, anchors or cannon, *in-situ* conservation methods using sacrificial anodes to provide cathode protection have proved successful (MacLeod, 1996a; 1996b; 1998).

Intrusive *in-situ* methods that have been applied to excavated sites include backfilling, installation of barriers and reburial of excavated materials (Oxley, 1998a: 97-100; 1998b; Manders, 2008; Manders, 2011; Khakzad and Van Balen, 2012; see Staniforth and Shefi, 2010 for a good summary of projects that have employed these different methods and related research projects). Backfilling an excavation area with the removed overburden is the easiest and most economical option for reburial, and can be effective in the short-term, as at Bajo de la Campana, but this method rarely succeeds in re-developing the anaerobic environment necessary to ensure long-term protection against continued degradation from marine biota (Oxley, 1998b). Similarly,
dumping sediment onto a site after excavation has failed to consistently provide adequate long-term protection (Staniforth and Shefi, 2010: 1547), and the common practice of placing sandbags on top to maintain coverage has had little positive impact (Oxley, 1998b; Staniforth and Shefi, 2010: 1548).

Like at Bajo de la Campana, seagrass grows naturally on many shipwreck sites. The fronds of seagrass slow down water-currents across the bottom and increase sedimentation, and the roots and rhizomes stabilise the seabed. However, once removed by excavation, the seagrass is rarely able to re-establish itself (Godfrey et al., 2005: 15, 51). Various methods have been used to duplicate the effect that seagrass has on shipwreck sites to ensure their long-term coverage. Artificial seagrass has been installed on top of sites (Harvey, 1996; Richards, 2011b: 35), but these systems are expensive and dependant upon specific and consistent environmental conditions (Staniforth and Shefi, 2010: 1549); so far, they have met with variable success (Moran, 1997). Geotextiles have been employed successfully over sites, providing a physical barrier and trapping sediment to maintain good coverage and protection (Oxley, 1998a: 100-104; 1998b: 159, 165).

The key to any type of reburial is reaching the proper depth required to achieve anaerobic conditions, and quantifying of the environmental factors of the site, including temperature, salinity, pH, Redox potential, dissolved oxygen, sulphide levels, turbidity and sediment particle size (Florian et al., 1977; Gregory, 1998; Pournou et al., 2001; Staniforth and Shefi, 2010: 1550; Richards, 2011a). A detailed management plan (Green, 2004: 370-371; Manders, 2004) and continuous monitoring (Richards, 2011b: 34-36) also are critical to achieving long-term preservation.

Another approach to in-situ preservation that seeks to address the need for examination, recording and study of underwater cultural material, while being mindful of the limitations on conservation, storage and curatorial resources, is excavation and reburial of recovered materials. The Red Bay project in Canada pioneered this approach (Grenier, 2007). Between 1980 and 1985, Parks Canada excavated and recorded in its entirety a 16th-century Basque whaling ship. Dismantling the vessel completely, the project team raised some 3000 timbers to the surface, where they were recorded in detail and then kept in a temporary underwater storage area until being systematically reburied in the seabed (Stewart et al., 1995; Curci, 2006; Waddell, 2007).

A number of research projects have been designed to trial different in-situ reburial methods and to assess the impacts of materials and environmental conditions. Three such projects are the ‘Reburial and Analyses of Archaeological Remains’ (RAAR) project in Marstrand, Sweden, designed to study long-term (50 years) impacts of reburial on archaeological materials (RAAR, 2002; Bergstrand and Nyström Godfrey, 2007; Nyström Godfrey et al., 2011; Nyström Godfrey et al., 2012); the European Commission’s ‘Monitoring, Safeguarding and Visualizing North-European Shipwreck Sites’ (MoSS) project (Cederlund, 2002; Cederlund, 2004a; 2004b; 2004c); and the ‘James Matthews’ project conducted by the Western Australian Museum (Richards, 2003; 2011b; Godfrey et al., 2005; Winton and Richards, 2005). Most recently, the Australian Historic Shipwreck Protection Project completed the initial fieldwork phase of its investigation of the excavation, reburial and in-situ preservation of shipwrecks and their associated artefacts, using as a case study the Clarence (1850) shipwreck in Port Phillip Bay, Victoria (Veth et al., 2011; Philippou, 2012a; 2012b). The project aims to develop a protocol for the rapid excavation, detailed recording and subsequent in-situ preservation and monitoring of endangered historic shipwreck sites.

When dealing with large numbers of hardier archaeological materials, such as ceramic amphoras, in-situ storage on underwater sites may not involve reburial, but rather designated long-term surface storage depots. The advantage of this method is that it provides for easy access to the stored objects for future retrieval and study by researchers (Bass, 1990: 11). Of course, the security of the objects will be a concern and must be addressed before resorting to this approach.
Archaeological excavation and recovery

At a conference in 2010, the Secretary of the UNESCO Convention on the Protection of the Underwater Cultural Heritage clarified that the Convention does not make insitu preservation the «only» or «preferred» managerial strategy for underwater cultural heritage, only that it be considered as a primary option, and that it certainly does not prohibit intrusive excavation (Kingsley, 2010c: 23, n. 21). This clarification subsequently was expanded in published guidelines to the Convention Annex (Maarleveld et al., 2013: 20-23). Excavation should be undertaken only for compelling reasons: for protection, should underwater cultural heritage be threatened by development projects or by environmental instability; for making a significant contribution to knowledge, firmly contextualised in the broader research and founded on sound research design and questions; or for enhancement of underwater cultural heritage, always with an eye towards public access and benefit (Maarleveld et al., 2013: 21-28). As for what constitutes the level of «importance» or «significance» of a particular shipwreck to justify excavation, no universally accepted set of criteria exists, although, within the structure of the Convention, some, for example, have tried to define sites in terms of evidential, historical, aesthetic, and communal values (Dunkley, 2008: 24-25).

Within this framework, the determination to excavate the Bajo de la Campana Phoenician shipwreck was justified. As the only shipwreck of a Phoenician seagoing vessel to be fully excavated and subjected to systematic archaeological and scientific investigation, it has the potential to yield new primary evidence for specific objects of Phoenician material culture, for Phoenician seafaring and maritime trade, for Phoenician colonial commerce in south-eastern Spain, for mineral and raw metal sourcing in the Western Mediterranean, for particular aspects of Phoenician-Indigenous (orientalising) interactions in Iberia, and for much more.

Significance of the Bajo de la Campana Phoenician shipwreck

In her seminal work, *The Phoenicians and the West*, the eminent Spanish scholar María Eugenia Aubet (2001: 166) notes that «Underwater archaeology has not so far succeeded in recovering any Phoenician ship from the period of expansion into the Mediterranean.» Indeed, Archaic-period shipwrecks in the Mediterranean are rare, as are those of seagoing Phoenician vessels. Of more than 1200 ancient shipwreck sites catalogued in the Mediterranean region (Parker, 1992), a mere eight date between 850 and 600 B.C., and only six of those are potentially Phoenician (three additional Phoenician sites have been discovered since publication of Parker's compendium). Regardless, none of the sites had been excavated, nor their material subjected to systematic study, making the Bajo de la Campana research project unique and significant.

The theoretical approach used both to justify excavation of the Phoenician shipwreck at Bajo de la Campana and shape its study has a strong historical particularistic bent, and was chosen based in part on the quality and especially variety –raw (lead, tin, amber and ivory); finished (combs, pottery, ship fasteners and hull remains); epigraphical (tusk inscriptions); typological (ceramics); chronological (ceramics, organics)– of the archaeological materials and their potential to provide new information (Bass, 1966: 143; 1983; Gibbins and Adams, 2001: 284-285). Underpinning the selection of this approach is the absence of Phoenician shipwrecks and their associated comparative data (Bass, 1983: 96-97; Parker, 1990: 345).

The Bajo de la Campana Phoenician shipwreck represents an essentially closed and contemporaneous assemblage of material from a common cultural horizon, much like the contents of a tomb or other buried or ceremonial deposit. However, grave goods were chosen for more specific and selective ends, and thus differ in the information they can provide. The inferential
benefit of shipwrecking events, like other catastrophic occurrences, is that they preserve indicators of normal, daily life (albeit in a specialised social context) and trade commodities in transit (Parker, 1992: 3). This is important especially with respect to transported raw materials, since little trace of these survives in the archaeological record once they reach their destination ashore and are processed and otherwise altered by their conversion to manufactured product.

The project aims to increase knowledge of the Phoenician presence in south-eastern Spain in the 7th-6th centuries B.C. The research is designed to address several interrelated thematic areas: the nature of Phoenician colonisation in the region; organisation of supply chains within the Iberian Peninsula and connections to wider trade networks in the Western Mediterranean and beyond; and the mechanics of trade and/or exchange amongst Phoenician colonies and with their indigenous neighbours. These broad processual questions are being addressed through studies of the cargo and equipment recovered from the Bajo de la Campana shipwreck. Evaluation and analysis of the archaeological finds will attempt to determine the sources of the various materials, the ship’s port of origin, route and intended destination, and the nature and purpose of the original venture (Polzer, Forthcoming). The special characteristics of shipwreck assemblages and the singular nature of this site with regards to Phoenician archaeology make the Bajo de la Campana shipwreck a highly attractive subject for excavation and study.

For-profit archaeology

Shipwreck salvage for monetary gain through the sale, trade or commercial exchange of recovered archaeological artefacts goes by many names: salvage, treasure hunting, for-profit archaeology, and, most recently, commercial marine archaeology. No matter what it is called, it is incompatible with proper protection and management of underwater cultural heritage and is expressly prohibited in Article 2.7 and Annex Rule 2 of the UNESCO Convention (Maarleveld et al., 2013: 35).

The debate between archaeologists and treasure hunters has raged on for decades, typically through the media or, in the more recent past, on the internet. On 11 February 2010, academics, businessmen and lawyers from both sides of the argument met at the Underwater Intervention conference in New Orleans to discuss, in a more civil and productive manner, the question of for-profit archaeology in light of the UNESCO Convention (Kingsley, 2010a).

Despite the many arguments put forth by both sides, whatever their merit, the fundamental and irreconcilable reality is that one approach to underwater cultural heritage profits the individual or the few through commercial exploitation of public property, while the other profits society through the acquisition, interpretation and dissemination of knowledge about its past (Hall, 2007: 8). The business model of commercial archaeology has an internal contradiction that prevents it from serving the public good, or at least to its fullest extent: the aim of maximizing profit ultimately is incompatible with the goal of maximizing the archaeological potential of the cultural material (i.e., maximizing the quality of the recording, recovery, conservation, curation and research of the material) (Castro, 2010; Kingsley, 2010b: 4).

In July 2010, then INA President James Delgado visited the Bajo de la Campana excavation and spent several days working with the expedition team. He joined me on a number of dives to the site and assisted me in excavating one particular grid sector. During his visit, he posted several comments about his experience on the INA Facebook page:

We spend our dives crouching on the seabed, meticulously collecting every fragment in plastic containers, even seeds, possibly part of the amphora’s contents. Mark hand-fanned
and used a small camel-hair brush to painstakingly expose the fragments of a complete Phoenician amphora that was crushed when it sank 2,700 years ago. Archaeology is all about PATIENCE, and for days now, we have worked a corner of a small unit, in increments of hour-long dives. Your world as an archaeologist shrinks to focus on the miniscule landscape of your 2 × 2 meter unit, and in this attention to detail, minute traces of the past mount into the evidence that will one day fill in a blank page in the history books. (Delgado, 2010).

It is this type of tedious and meticulous work and these types of finds –thousands of small pine nuts, individual pinecone scales, twigs from brushwood dunnage, etc.– that a profit-driven excavator would never consider, because it takes too much time (i.e., is too costly) and because they have absolutely no commercial value (Grenier, 2006). The types of sites selected for excavation, the types of materials recovered, and the quality of the work is all subject to this inescapable reality (Pringle, 2013: 803). In the words of Odyssey Marine Exploration CEO Greg Stem, «Maritime operations can cost at least 25,000 Euros a day, so devoting two weeks to recovering a treasure of 70,000 Euros is not worth it,...» (Elkin, 2009: 61, my translation).

The most tangible difference between true archaeology and commercial salvage is what takes place after the fieldwork is completed (Bass, 1990). Conservators at ARQUA have spent years desalinating, removing concretion and corrosion, consolidating, stabilising, drying and restoring the thousands of fragmentary and whole objects recovered from the Bajo de la Campana shipwreck. They analyse materials in order to ascertain their condition and to quantify any contaminants that they will have to remove. And through it all they keep meticulous notes to document all sorts of data, observations and responses to treatments.

Archaeological illustrators spend long hours carefully measuring and drawing each piece, while photographers make photographic records of objects and features. Archaeologists catalogue each piece and try to determine its identity, provenance, purpose, meaning and date through comparison with similar objects from other sites, references in ancient texts and modern scholarship, and myriad physical and chemical analyses. The Bajo de la Campana material is being subjected to a barrage of analytical tests –lead isotope, elemental, petrographic, neutron activation, chemical composition, x-ray and radiocarbon dating, to mention a few– that hopefully will provide the evidence needed to determine when the ship sank, the route it was travelling, who was on board, the nature of the venture and answers to many other questions that will allow us to better interpret the shipwreck and, through it, gain a greater understanding of the broader social, cultural, political and economic contexts to which it belonged-Phoenician Spain in the late 7th century B.C. This effort will continue for years and will require a dedication well beyond what a profit motive would suffer. However, the labour is obligatory, since ultimately the objective of [archaeology] is not just description, […] its primary aim is explanation- (Bowens, 2009: 37).

In July 2009, midway through the second season of excavation, I received a telephone call from a writer for Vanity Fair who wanted to interview me for an article he was writing about Greg Stem and the controversial salvage of the Nuestra Señora de las Mercedes shipwreck by Odyssey Marine Exploration. He informed me that the article was going to discuss the differences between shipwreck salvage, like in the Mercedes case, and the archaeological excavation and study I was conducting at Bajo de la Campana. The distinction is one that the general public often does not make, or understand, so I welcomed the chance to engage in the conversation.

I spent more than an hour on the phone with him explaining the different methodologies used by archaeologists and treasure hunters and the implications of each to the management of cultural materials and the interpretation of their meaning and significance. I provided him
with numerous examples of sites excavated by INA and the extraordinary knowledge and insight to the past that their meticulous studies have revealed. And I described to him the amazing Bodrum Museum of Underwater Archaeology – Turkey's most popular museum – that these excavations and years of dedicated conservation, research and interpretive work have filled with reconstructed hull remains, full-scale ship section replicas, and the astonishing arrays of ancient objects that the ships had carried, either as cargo, equipment or personal belongings of their crews (see http://www.unesco.org/new/en/culture/themes/underwater-cultural-heritage/museums-and-tourism/ and http://www.bodrum-museum.com). Unfortunately, as so often seems to be the case with popular periodicals, the published article (Elkin, 2009) was mostly a romanticisation of Greg Stemm as a modern-day swashbuckler, with little genuine discussion about archaeology and treasure hunting and the real damage done by the latter to underwater cultural heritage and the public interest. As for my hour-long interview, it was reduced to a single, token quote to provide the typical sound bite from the academic opposition (Elkin, 2009: 60).

Treasure hunters certainly are winning the public relations war at this point (cf. Cockrell, 1990 and Hall, 2007, who offers a convincing response to the clever deceptions regarding underwater cultural heritage that treasure hunters have used to manipulate public opinion). Archaeologists, cultural heritage managers and museum curators must do a better job of engaging the public and informing them about the very real ways that for-profit salvage impacts them through the loss of cultural property and, with it, the information and tangible links it provides to their history and heritage.

As artefacts recovered from the Bajo de la Campana shipwreck complete their conservation treatment, the pieces are entering public display in ARQUA's permanent exhibition hall. The museum not only provides the public with access to the material, but it affords them a holistic perspective of underwater archaeology that explains the discipline and the methods by which the pieces entered into the public domain. It seeks to explain what underwater archaeology is, how it is performed, how it preserves, studies and interprets the underwater cultural heritage, and how that enriches all of our lives (see http://www.unesco.org/new/en/culture/themes/underwater-cultural-heritage/museums-and-tourism/).

In 2014, ARQUA will loan a selection of objects from the Bajo de la Campana Phoenician shipwreck to the Metropolitan Museum of Art in New York City to be featured in an ambitious exhibition titled «From Assyria to Iberia: Crossing Continents at the Dawn of the Classical Age». The exhibition is a sequel to two previous major shows dealing with 3rd and 2nd millennium B.C. civilisations of the Near East and Mediterranean, respectively. The exhibition will present a compelling picture of the origins and development of artistic traditions in the western world and their deep roots in the interaction between ancient Near Eastern and Mediterranean cultures. The exhibition will provide the public with a broader contextualisation of the shipwreck within the cultural and socio-economic conditions of the Archaic Mediterranean world and the role therein of the Phoenicians.

Fine institutions like ARQUA not only promote the sustainable management of the underwater cultural heritage through preservation and research, but the exhibitions, academic congresses, publications, interactive displays and websites, and other public outreach programs that they provide are excellent means of educating and entertaining the public with respect to underwater cultural heritage, and of combating those individuals or companies that would exploit it for personal gain. It is hoped that the successful collaboration between INA and the Ministry of Culture of Spain in the Bajo de la Campana shipwreck project is contributing to that effort and to the ongoing labour of preserving Spain's cultural heritage under the sea.
References

